Reducing Uncertainty in User-independent Activity Recognition - A Sensor Fusion-based Approach

نویسندگان

  • Pekka Siirtola
  • Juha Röning
چکیده

In this study, a novel user-independent method to recognize activities accurately in situations where traditional accelerometer based classification contains a lot of uncertainty is presented. The method uses two recognition models: one using only accelerometer data and other based on sensor fusion. However, as a sensor fusionbased method is known to consume more battery than an accelerometer-based, sensor fusion is only used when the classification result obtained using acceleration contains uncertainty and, therefore, is unreliable. This reliability is measured based on the posterior probabilities of the classification result and it is studied in the article how high the probability needs to be to consider it reliable. The method is tested using two data sets: daily activity data set collected using accelerometer and magnetometer, and tool recognition data set consisting of data from accelerometer and gyroscope measurements. The results show that by applying the presented method, the recognition rates can be improved compared to using only accelerometers. It was noted that all the classification results should not be trusted as posterior probabilities under 95% cannot be considered reliable, and by replacing these results with the results of sensor fusion -based model, the recognition accuracy improves from three to six percentage units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1

In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...

متن کامل

A New Ontology-Based Approach for Human Activity Recognition from GPS Data

Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...

متن کامل

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

From User-independent to Personal Human Activity Recognition Models Using Smartphone Sensors

In this study, a novel method to obtain user-dependent human activity recognition models unobtrusively by using the sensors of a smartphone is presented. The recognition consists of two models: sensor fusion-based user-independent model for data labeling and single sensor-based userdependent model for final recognition. The functioning of the presented method is tested with human activity data ...

متن کامل

Collaborative Gesture Analysis in Multi-Camera Networks

An architecture for opportunistic discovery of gesture elements for analysis of human gestures in a multi-camera sensor network is presented in this paper. The proposed approach is motivated by the diversity of gestures expressed in passive monitoring applications, and is based on the concept of opportunistic fusion of simple features within a single camera and active collaboration between mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016